原图/完整电子版搜索微信公众号:初中提分笔记课堂 人教版八年级数学上册知识点总结 第十一章 三角形 一、知识结构图 边 与三角形有关的线段 高 中线 角平分线 三角形的内角和 多边形的内角和 三角形的外角和 多边形的外角和 二、知识定义 三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线。 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 多边形的内角:多边形相邻两边组成的角叫做它的内角。 多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。 三、公式与性质 三角形的内角和:三角形的内角和为 180° 三角形外角的性质: 性质 1:三角形的一个外角等于和它不相邻的两个内角的和。 性质 2:三角形的一个外角大于任何一个和它不相邻的内角。 多边形内角和公式:n 边形的内角和等于(n-2)·180° 多边形的角和:多边形的外角和为 360°。 多边形对角线的条数: (1)从 n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分词 (n-2)个三角形。 n(n - 3) (2)n 边形共有 2 条对角线。 第十二章 全等三角形 [来源:学+科+网] 一、全等三角形 1.定义:能够完全重合的两个三角形叫做全等三角形。 2.全等三角形的性质 ①全等三角形的对应边相等、对应角相等。 ②全等三角形的周长相等、面积相等。 ③全等三角形的对应边上的对应中线、角平分线、高线分别相等。 3.全等三角形的判定 边边边:三边对应相等的两个三角形全等(可简写成“SSS”) 原图/完整电子版搜索微信公众号:初中提分笔记课堂 边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”) 角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”) 角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”) 斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”) 4.证明两个三角形全等的基本思路: 二、角的平分线: 1. (性质)角的平分线上的点到角的两边的距离相等 2. (判定)角的内部到角的两边的距离相等的点在角的平分线上 三、学习全等三角形应注意以下几个问题: 1.要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义; 2.表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上; 3.有三个角对应相等或有两边及其中一边的对角对应相等的两个三角形不一定全等; 4.时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角” 第十三章 [来源:学.科.网] 轴对称 一、轴对称图形 1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称 图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线成轴对称。 2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条 直线对称,这条直线叫做对称轴。折叠后重合的点是对应点,也叫做对称点 3.轴对称图形和轴对称的区别与联系 轴对称图形 轴对称 原图/完整电子版搜索微信公众号:初中提分笔记课堂 图形 区别 轴对称图形是指一个图形而言; 对称轴不一定只有一条 周对称是指两个图形的位置关系,必须涉及两个 图形; 只有一条对称轴 联系 如果把轴对称图形沿对称轴分成两部分, 如果把两个成轴对称的图形拼在一起看成一个 那么这两个图形就关于这条直线成轴对 整体,那么它就是一个轴对称图形 称 4.轴对称的性质 ①关于某直线对称的两个图形是全等形。 ②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 ④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。 二、线段的垂直平分线 1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。 2.性质:线段垂直平分线上的点到这条线段的两个端点的距离相等; 到线段两个端点距离相等的点,在线段的垂直平分线上。 3.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等 三、用坐标表示轴对称 点(x, y)关于 x 轴对称的点的坐标为______;点(x, y)关于 y 轴对称的点的坐标为______。 四、等腰三角形 1.等腰三角形的性质 ①.等腰三角形的两个底角相等(等边对等角) ②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一) 2.等腰三角形的判定: ①有两条边相等的三角形是等腰三角形 ②两个角相等的三角形是等边三角形(等角对等边) 五、等边三角形 1.等边三角形的性质: 等边三角形的三个角都相等,并且每一个角都等于 600 2.等边三角形的判定: ①三条边都相等的三角形是等边三角形 ②三个角都相等的三角形是等边三角形 0 ③有一个角是 60 的等腰三角形是等边三角形 3.在直角三角形中,如果一个锐角等于 300,那么它所对的直角边等于斜边的一半 [来源:学科网 ZXXK] [来源:学科网 ZXXK] 第十四章 整式乘法与因式分解 一、幂的运算性质: 1.同底数幂相乘,底数不变,指数相加,即 a 2.幂的乘方,底数不变,指数相乘,即 ( a m m )n a n a m n ( m 、 n 为正整数) a m n ( m 、 n 为正整数) 3.积的乘方等于各因式乘方的积,即 ab a b (n 为正整数) n n n 原图/完整电子版搜索微信公众号:初中提分笔记课堂 4.同底数幂相除,底数不变,指数相减,即 a 且m n ) m a n a m n ( a 0 , m 、 n 都是正整数, 5.零指数幂的概念:任何一个不等于零的数的零指数幂都等于,即 a 0 1 ( a 0 ) 二、整式的乘法 1.单项式与单项式乘法法则:把系数、同底数幂分别相乘,作为积的因式,对于只在 一个单项式里 含有的字母,则连同它的指数作为积的一个因式. 2.单项式与多项式的乘法法则:用单项式与多项式的每一项分别相乘,再把所得的积相加. 3.多项式与多项式的乘法法则:先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得 的积相加. 4.乘法公式: ①平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即 (a b )(a b ) a 2 b 2 ; ②完全平方公式:两数和(或差)的平方等于它们的平方和,加(或减)它们的积的 2 倍,即 (a b )2 a 2 2 a b b 2 。 四、因式分解: 1.因式分解的定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解。 掌握其定义应注意以下几点: ①分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可; ②因式分解必须是恒等变形; ③因式分解必须分解到每个因式都不能分解为止。 2.弄清因式分解与整式乘法的内在的关系 因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差 的形式。 3.熟练掌握因式分解的常用方法. (1)提公因式法 ①提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:A 系数——各项系数的最大公约 数; B 字母——各项含有的相同字母;C 指数——相同字母的最低次数。 ②提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完 公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项. ③注意点:A 提取公因式后各因式应该是最简形式,即分解到“底”; B 如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的。 (2)公式法(运用公式法分解因式的实质是把整式中的乘法公式反过来使用) ①平方差公式: a 2 b 2 (a b )(a b ) 2 a b b 2 (a b )2 (3)十字相乘法: x 2 ( p q ) x p q ( x p ) ( x q ) ②完全平方公式: a 2 4.添括号时,如果括号前面是正号,括号里的各项都不变符号;如果括号前面时负号,括号里的各项都改变符 号. 第十五章 分式 1.分式的定义:如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A 叫做分式。分式有意义的条件 B 是分母不为零,分式值为零的条件分子为零且分母不为零 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于 0 的整式,分式的值不变 。 原图/完整电子版搜索微信公众号:初中提分笔记课堂 A AC B B C A AC B BC (C 0 ) 3.分式的通分和约分:关键先是分解因式 4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 a c ac a c a d ad ; b d bd b d b c bc 分式乘方法则:分式乘方要把分子、分母分别乘方。 a an ( )n n b b 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为 a b a b a c ad bc ad bc , c c c b d bd bd bd 同分母分式,然后再加减 混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。 0 5. 任何一个不等于零的数的零次幂等于 1, 即 a 1( a 0) ;当 n 为正整数时, an 1 an ( a 0) 6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数) m n (1)同底数的幂
人教版数学八年级上册单元知识点总结.pdf
初中 >
八年级 >
数学 >
文档预览
6 页
0 下载
21 浏览
0 评论
0 收藏
温馨提示:如果当前文档出现乱码或未能正常浏览,请先下载原文档进行浏览。
本文档由 资料管理员 于 2024-08-14 17:17:32上传